- Answer all the following questions
- Illustrate your answers with sketches when necessary.
- The exam. Consists of one page
- No. of questions: 4
- Total Mark: 80 Marks

تنبيه: مراعاة إجابة كل جزء فى ناحية مستقلة
$1-\mathrm{a})$ Find Fourier series for the function $\mathrm{f}(\mathrm{x})=|\sin \mathrm{x}|-\pi \leq \mathrm{x} \leq \pi$, and find $\sum_{\mathrm{m}=1}^{\infty} \frac{1}{(2 \mathrm{~m}-1)^{2}(2 \mathrm{~m}+1)^{2}}$.
1-b) Expand into complex Fourier series the periodic function $f(x)=\left\{\begin{array}{ll}0, & -\pi<x<0 \\ 1, & 0<x<\pi\end{array}\right.$ of period 2π
(15 marks)
2-a) Find generating function for Legendre polynomial and show that:

$$
P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n-1} P_{n-1}(x) \text {, then find } P_{2}(x), P_{3}(x)
$$

2-b) Write the reccurence relation for Bessel`s function and show that $\int x^{n} J_{n-1}(x) d x=x^{n} J_{n}(x)+c$, find $\mathrm{J}_{5 / 2}$ (x)
(20 marks)

Probability and Statistics (Total scores :45marks)

$3 \mathrm{a}-\mathrm{i}$) Susan goes to work by one of two routes A or B. The prob. of going by route A is 30%. If she goes by route A , the prob. of being late is 5% and if she goes by route B , the prob. of being late is 10%. Given Susan is late for shool, find prob. that she went via route B.
(5 marks)
3a-ii) Suppose that you have a bag filled with 50 marbles, 15 of which are green. What is the prob. of choosing exactly 3 green marbles if a total of 10 marbles are selected?
(5 marks)
3b-i) Let the r.v. X be the distance in feet between bad records on a used computer tape. Suppose that a reasonable probability model for X is given by the p.d.f. $f(x)=\frac{1}{40} e^{-x / 40}, 0<x<\infty$, find $P(X>x)$ and then the median, also find m.g.f. and then deduce mean, standard deviation, $\mu_{3}, \mu_{3}{ }^{\prime}$.
(10 marks)
3b-ii) Suppose that (X,Y) has probability density function f given by $f(x, y)=(x+y) / 4$ for $0<x<y<2$
Find the probability density functions of X and of $\mathrm{Y}($ Marginal of X and Y$), \mathrm{P}[(\mathrm{X}+\mathrm{Y})>1 / 2]$ and then determine if X and Y are independent.
(10 marks)
4-a)A fair coin is tossed three times, X is the N^{o} of heads that come up on the first 2 tosses and Y is the N^{0} of heads that come up on tosses 2,3 . Construct the joint distribution and find marginal of X and Y , also find expected value and variance of X and Y
(10 marks)
4-b) Suppose that if a car gets into an accident, the dollar amount of damage is Gamma-distributed with alpha $=2$ and Beta $=100$. Evaluate the average loss (in dollars) and the standard deviation of the loss (to the nearest dollar)?
(5 marks)
BOARD OF EXAMINERS Dr. Ibrahim Sakr \& Dr. Khaled El Naggar

Model Answer

Probability and Statistics

3a-i) $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.7, \mathrm{P}(\mathrm{L} / \mathrm{A})=0.05, \mathrm{P}(\mathrm{L} / \mathrm{B})=0.1, \mathrm{P}(\mathrm{B} / \mathrm{L})=[\mathrm{P}(\mathrm{L} / \mathrm{B}) \mathrm{P}(\mathrm{B})] / \mathrm{P}(\mathrm{L})$, where L: is Late event, $\mathrm{P}(\mathrm{L})=\mathrm{P}(\mathrm{L} / \mathrm{A}) \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{L} / \mathrm{B}) \mathrm{P}(\mathrm{B})=0.05(0.3)+0.1(0.7)=0.085$, so $\mathrm{P}(\mathrm{B} / \mathrm{L})=0.1(0.7) / 0.085=0.824$

3a-ii) Let the r.v. is the number of green marbles, so that by using hypergeometric distribution $\mathrm{N}=50$, $\mathrm{k}=15, \mathrm{n}=10$, therefore $\mathrm{P}(\mathrm{X}=3)=\left[{ }^{50} \mathrm{C}_{3}\right]\left[{ }^{35} \mathrm{C}_{7}\right] /\left[{ }^{50} \mathrm{C}_{10}\right]$.
$3 b-i) P(X>x)=1-P(X<x)=1-\int_{0}^{x} \frac{1}{40} \mathrm{e}^{-x / 40} d x=\mathrm{e}^{-\mathrm{x} / 40}$. To get the median a such that $\mathrm{P}(\mathrm{X}<\mathrm{a})=0.5$, therefore $\int_{0}^{\mathrm{a}} \frac{1}{40} \mathrm{e}^{-\mathrm{x} / 40} \mathrm{dx}=0.5$, thus $1-\mathrm{e}^{-\mathrm{a} / 40}=0.5 \Rightarrow \mathrm{a}=-40 \quad \ln (0.5)=27.726$, and m.g.f. $=\int_{0}^{\infty} \mathrm{e}^{\mathrm{tx}}\left(\frac{1}{40} \mathrm{e}^{-\mathrm{x} / 40}\right) \mathrm{dx}=\int_{0}^{\infty} \frac{1}{40} \mathrm{e}^{\frac{-(1-40 \mathrm{t}) \mathrm{x}}{40}} \mathrm{dx}=\frac{1}{1-40 \mathrm{t}}=\phi(\mathrm{t})$, therefore $\mu_{1}{ }^{\prime}=\phi^{\prime}(0)=\left.\frac{40}{(1-40 \mathrm{t})^{2}}\right|_{\mathrm{t}=0}=40=$ $\mathrm{E}(\mathrm{X})$ and $\mu_{2}{ }^{\prime}=\phi^{\prime \prime}(0)=\left.\frac{3200}{(1-40 \mathrm{t})^{3}}\right|_{\mathrm{t}=0}=3200=\mathrm{E}\left(\mathrm{X}^{2}\right)$, hence $\operatorname{var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=3200-1600=$ 1600, so standard deviation $=40$ and $\mu_{3}{ }^{\prime}=\phi^{\prime \prime \prime}(0)=\left.\frac{384000}{(1-40 t)^{3}}\right|_{t=0}=384000$, but $\mu_{3}=\mu_{3}{ }^{\prime}-3 \mu_{1}{ }^{\prime} \mu_{2}{ }^{\prime}+2\left[\mu_{1}\right]^{3}$, therefore $\mu_{3}=384000-3(40)(3200)+2(40)^{3}=128000$.

3b-ii) $f_{1}(x)=\int_{x}^{2} \frac{(x+y)}{2} d y=\left.\frac{x y+y^{2} / 2}{2}\right|_{x} ^{2}=x+1-\frac{3 x^{2}}{4}$ and $f_{2}(y)=\int_{0}^{y} \frac{(x+y)}{2} d x=\left.\frac{x y+x^{2} / 2}{2}\right|_{0} ^{y}=\frac{3 y^{2}}{4}$
$P[(X+Y)>1 / 2]=\int_{1 / 4}^{1 / 2}\left[\int_{1 / 2-y}^{y}\left(\frac{x+y}{2}\right) d x\right] d y+\int_{1 / 2}^{2}\left[\int_{0}^{y}\left(\frac{x+y}{2}\right) d x\right] d y$ and since $f_{1}(x) f_{2}(y) \neq f(x, y)$, thus they are not independent.
(1/4,1/4)

4-a)

X	Y	0	1	2	$\mathrm{f}_{1}(\mathrm{x})$
X	$1 / 8$	$1 / 8$	0	$2 / 8$	
1	$1 / 8$	$2 / 8$	$1 / 8$	$4 / 8$	
2	0	$1 / 8$	$1 / 8$	$2 / 8$	
$\mathrm{f}_{2}(\mathrm{y})$	$2 / 8$	$4 / 8$	$2 / 8$	1	

$\mathrm{E}(\mathrm{X})=0(2 / 8)+1(4 / 8)+2(2 / 8)=1, \mathrm{E}(\mathrm{Y})=0(2 / 8)+1(4 / 8)+2(2 / 8)=1, \mathrm{E}\left(\mathrm{X}^{2}\right)=1(4 / 8)+4(2 / 8)=3 / 2$,
$\mathrm{E}\left(\mathrm{Y}^{2}\right)=1(4 / 8)+4(2 / 8)=3 / 2, \operatorname{Var}(\mathrm{X})=\operatorname{Var}(\mathrm{Y})=1 / 2$
4b) Since $E(X)=\alpha / \beta=2 / 100=0.02, \operatorname{Var}(X)=\alpha / \beta^{2}$, therefore standard deviation $=\sqrt{2} / 100$

